Functions of Permuted Matrices

Dingjia Mao, Yuan Luo

April 20, 2019

Table of contents

(1) Notations

(2) Main Theorem

(3) Several Lemmas
(4) Proof of Theorem

Notations

X: finite-dimensional inner product space on $\mathbb{C} . \operatorname{dim} X=n$.
A,B: self-adjoint operator
$\mathrm{f}: \mathbb{R} \rightarrow \mathbb{C}$ which is differentiable
It turns out that $\operatorname{tr}(f(B)-f(A))=\int_{\mathbb{R}} f^{\prime}(t) \xi(t) d t$ where $\xi(t)$ only depends on A and B . We want to construct properties of $\xi(t)$.

Main Theorem

Theorem

$\exists \xi(t)$, s.t.

$$
\operatorname{tr}(f(B)-f(A))=\int_{\mathbb{R}} f^{\prime}(t) \xi(t) d t
$$

where $\xi(t)$ only depends on A and B.

$$
\int_{\mathbb{R}}|\xi(t)| d t \leqslant\|B-A\|_{t r}=\sum_{i=1}^{n}\left|\xi_{i}\right|
$$

, where ξ_{1}, \ldots, ξ_{n} are all eigenvalues of $B-A$.

Several Lemmas

Lemma

Let $\lambda_{1} \leqslant \cdots \leqslant \lambda_{n}$ be all eigenvalues of $A, \mu_{1} \leqslant \cdots \leqslant \mu_{n}$ be all eigenvalues of B. Then for some function $\xi(t)$,

$$
\operatorname{tr}(f(B)-f(A))=\int f^{\prime}(t) \xi(t) d t
$$

Proof:

$$
\begin{aligned}
\operatorname{tr}(f(B)-f(A)) & =\sum_{i=1}^{n} f\left(\mu_{i}\right)-\sum_{i=1}^{n} f\left(\lambda_{i}\right)=\sum_{i=1}^{n}\left(f\left(\mu_{i}\right)-f\left(\lambda_{i}\right)\right)=\sum_{i=1}^{n} \int_{\lambda_{i}}^{\mu_{i}} f^{\prime}(t) d t \\
& =\sum_{i=1}^{n} \int f^{\prime}(t) \chi_{i}(t) d t=\int f^{\prime}(t) \sum_{i=1}^{n} \chi_{i}(t) d t
\end{aligned}
$$

, where $\chi_{i}(t)=\chi_{\left[\lambda_{i}, \mu_{i}\right]}(t)$ or $\chi_{i}(t)=-\chi_{\left[\mu_{i}, \lambda_{i}\right]}(t)$.
Therefore, $\xi(t)=\sum_{i=1}^{n} \chi_{i}(t)$

Several Lemmas

Lemma

Let \mathbb{A} be a linear operator on $X, \sigma_{1} \leqslant \cdots \leqslant \sigma_{n}$ be all eigenvalues of \mathbb{A}, then

$$
\sigma_{k}=\min _{L \text { is a subspace of } X, \operatorname{dim} L=k} \max \{(\mathbb{A} x, x)\|x\|=1, x \in L\}
$$

Proof:

Let $W=u_{1}, \ldots, u_{n}$ be an orthonormal basis of X s.t. u_{i} is an eigenvector of $\sigma_{i}, i=1, \ldots n$. Let $W_{k}=u_{k-1}, \ldots, u_{n}$, then $\operatorname{dim} W_{k}=n-k+1$. For any L s.t. $\operatorname{dimL}=k$,

$$
\operatorname{dim}\left(L \cap W_{k}\right)=\operatorname{dim} L+\operatorname{dim} W_{k}-\operatorname{dim}\left(L \cup W_{k}\right) \geqslant k+(n-k+1)-n=1
$$

Fix $x \in\left(L \cap W_{k}\right)-0$, then $x=\sum_{j=k}^{n}\left(x, u_{j}\right) u_{j}, A u_{j}=\sigma_{j} u_{j}, j=1, \ldots, n$
$\Rightarrow(\mathbb{A} x, x)=\left(\sum_{j=k}^{n}\left(x, u_{j}\right) \mathbb{A} u_{j}, x\right)=\sum_{j=k}^{n} \sigma_{j}\left|\left(x, u_{j}\right)\right|^{2}=\sigma_{k}\|x\|^{2}$
$\Rightarrow \sup \{(\mathbb{A} x, x):\|x\|=1, x \in L\} \geqslant \sigma_{k}$

Several Lemmas

On the other hand, let $L_{0}=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}, \operatorname{dim} L_{0}=k$
Then $(\mathbb{A} x, x)=\sum_{j=1}^{k} \sigma_{j}\left|\left(x, u_{j}\right)\right|^{2} \leqslant \sigma_{j}\|x\|^{2}$ In particular, $(\mathbb{A} x, x)=\sigma_{j}\|x\|^{2}$ when $x=u_{j}$ Therefore,

$$
\sigma_{k}=\min _{\mathrm{L} \text { is a subspace of } \mathrm{X}, \operatorname{dim} L=k} \max \{(\mathbb{A} x, x)\|x\|=1, x \in L\}
$$

Several Lemmas

Lemma

Let A and B be defined as before, satisfying $A+K=B$. If K is rank one and semi-positive definite, then $\lambda_{i} \leqslant \mu_{i}$ for all i.

Proof:

Notice that if we can show $(A x, x) \leqslant(B x, x)$, then by lemma 2 , we done.
So we just need to show $(K x, x) \geqslant 0$.
Since K is rank one and self-adjoint, there exists u and $a \geqslant 0$ such that $K=a u u^{T}$. Thus,

$$
(K x, x)=\left(a u u^{T}, x\right)=a x^{\top} u u^{\top} x=a\left(u^{\top} x\right)^{T} u^{\top} x \geqslant 0
$$

Corollary

Let A and B be defined as before, satisfying $A+K=B$. If K is rank one and semi-negative definite then $\lambda_{i} \geqslant \mu_{i}$ for all i.

Proof of Theorem

Now we can prove the theorem by induction on $m=\operatorname{rank}(B-A)$. Proof:
If $m=1$, then

$$
\mathbb{K} x=\sum_{i=1}^{n} \xi_{i}\left(x, v_{i}\right) v_{i}=\sum_{\xi_{i} \geqslant 0} \xi_{i}\left(x, v_{i}\right) v_{i}+\sum_{\xi_{i} \leqslant 0} \xi_{i}\left(x, v_{i}\right) v_{i}=: K_{+} x+K_{-x}
$$

, where v_{i} is the corresponding eigenvector of ξ_{i}
It shows that K can be written as $K_{+}+K_{-}$such that K_{+}is semi-positive and K_{-}is semi-negative definite.
Then we consider the corresponding function $\xi_{A, A+K_{+}}$for A and $A+K_{+}$, and the corresponding function $\xi_{A+K_{+}, B}$ for $A+K_{+}$and B.

Proof of Theorem

Let $\nu_{1} \leqslant \cdots \leqslant \nu_{n}$ be all the eigenvalues of $A+K_{+}$, then $\sum_{i=1}^{n}\left(\mu_{i}-\nu_{i}\right)=t r K_{-}$and $\sum_{i=1}^{n}\left(\nu_{i}-\lambda_{i}\right)=t r K_{+}$. And so, $\xi_{A, B}=\xi_{A, A+K_{+}}+\xi_{A+K_{+}, B}$
Therefore,

$$
\sum_{i=1}^{n}\left|\mu_{i}-\lambda_{i}\right| \leqslant \sum_{i=1}^{n}\left|\mu_{i}-\nu_{i}\right|+\sum_{i=1}^{n}\left|\nu_{i}-\lambda_{i}\right|=\operatorname{tr} K_{+}-\operatorname{tr} K_{-}=\sum_{i=1}^{n}\left|\xi_{i}\right|
$$

Next, suppose it holds for $\operatorname{rank}(K) \leqslant m$.
And for $\operatorname{rank}(K)=m+1$, there exists K_{1}^{\prime} and K_{2}^{\prime} such that $K=K_{1}^{\prime}+K_{2}^{\prime}$, where $\operatorname{rank}\left(K_{1}^{\prime}\right)=m, \operatorname{rank}\left(K_{2}^{\prime}\right)=1$. Thus,

$$
\sum_{i=1}^{n}\left|\mu_{i}-\lambda_{i}\right| \leqslant\left\|K_{1}^{\prime}\right\|_{t r}+\left\|K_{2}^{\prime}\right\|_{t r}=\|K\|_{t r}
$$

Therefore,

$$
\int_{\mathbb{R}}|\xi(t)| d t \leqslant\|B-A\|_{t r}=\sum_{i=1}^{n}\left|\xi_{i}\right|
$$

