Functions of Permuted Matrices

Dingjia Mao, Yuan Luo

April 20, 2019

Table of contents

- Notations
- Main Theorem
- Several Lemmas
- Proof of Theorem

Notations

X: finite-dimensional inner product space on \mathbb{C} . dim X = n.

A,B: self-adjoint operator

f: $\mathbb{R} \to \mathbb{C}$ which is differentiable

It turns out that $tr(f(B) - f(A)) = \int_{\mathbb{R}} f'(t)\xi(t)dt$ where $\xi(t)$ only depends on A and B. We want to construct properties of $\xi(t)$.

Main Theorem

Theorem

 $\exists \xi(t)$, s.t.

$$tr(f(B) - f(A)) = \int_{\mathbb{R}} f'(t)\xi(t)dt$$

where $\xi(t)$ only depends on A and B.

$$\int_{\mathbb{R}} |\xi(t)| dt \leqslant ||B - A||_{tr} = \sum_{i=1}^{n} |\xi_i|$$

, where ξ_1, \ldots, ξ_n are all eigenvalues of B-A.

Lemma

Let $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ be all eigenvalues of A, $\mu_1 \leqslant \cdots \leqslant \mu_n$ be all eigenvalues of B. Then for some function $\xi(t)$,

$$tr(f(B) - f(A)) = \int f'(t)\xi(t)dt$$

Proof:

$$tr(f(B)-f(A)) = \sum_{i=1}^{n} f(\mu_{i}) - \sum_{i=1}^{n} f(\lambda_{i}) = \sum_{i=1}^{n} (f(\mu_{i})-f(\lambda_{i})) = \sum_{i=1}^{n} \int_{\lambda_{i}}^{\mu_{i}} f'(t)dt$$
$$= \sum_{i=1}^{n} \int f'(t)\chi_{i}(t)dt = \int f'(t) \sum_{i=1}^{n} \chi_{i}(t)dt$$

, where
$$\chi_i(t)=\chi_{[\lambda_i,\mu_i]}(t)$$
 or $\chi_i(t)=-\chi_{[\mu_i,\lambda_i,]}(t)$.

Therefore, $\xi(t) = \sum_{i=1}^{n} \chi_i(t)$

Lemma

Let \mathbb{A} be a linear operator on X, $\sigma_1 \leqslant \cdots \leqslant \sigma_n$ be all eigenvalues of \mathbb{A} , then

$$\sigma_k = \min_{\textit{L is a subspace of X,dimL} = \textit{k}} \max\{(\mathbb{A}\textit{x},\textit{x})|||\textit{x}|| = 1, \textit{x} \in \textit{L}\}$$

Proof:

Let $W=u_1,\ldots,u_n$ be an orthonormal basis of X s.t. u_i is an eigenvector of $\sigma_i, i=1,\ldots n$. Let $W_k=u_{k-1},\ldots,u_n$, then $dimW_k=n-k+1$. For any L s.t. dimL=k,

$$dim(L \cap W_k) = dimL + dimW_k - dim(L \cup W_k) \geqslant k + (n - k + 1) - n = 1$$

Fix
$$x \in (L \cap W_k) - 0$$
, then $x = \sum_{j=k}^n (x, u_j)u_j$, $Au_j = \sigma_j u_j$, $j = 1, \dots, n$
 $\Rightarrow (\mathbb{A}x, x) = (\sum_{j=k}^n (x, u_j)\mathbb{A}u_j, x) = \sum_{j=k}^n \sigma_j |(x, u_j)|^2 = \sigma_k ||x||^2$
 $\Rightarrow \sup\{(\mathbb{A}x, x) : ||x|| = 1, x \in L\} \geqslant \sigma_k$

On the other hand, let
$$L_0 = span\{u_1, \ldots, u_k\}$$
, $dimL_0 = k$
Then $(Ax, x) = \sum_{j=1}^k \sigma_j |(x, u_j)|^2 \leqslant \sigma_j ||x||^2$
In particular, $(Ax, x) = \sigma_j ||x||^2$ when $x = u_j$ Therefore,

$$\sigma_k = \min_{\text{L is a subspace of X,} dimL=k} \max\{(\mathbb{A}x,x)|||x|| = 1, x \in L\}$$

Lemma

Let A and B be defined as before, satisfying A + K = B. If K is rank one and semi-positive definite, then $\lambda_i \leq \mu_i$ for all i.

Proof:

Notice that if we can show $(Ax, x) \leq (Bx, x)$, then by lemma 2, we done. So we just need to show $(Kx, x) \geq 0$.

Since K is rank one and self-adjoint, there exists u and $a\geqslant 0$ such that $K=auu^T$. Thus,

$$(Kx,x) = (auu^T,x) = ax^Tuu^Tx = a(u^Tx)^Tu^Tx \geqslant 0$$

o ...

Corollary

Let A and B be defined as before, satisfying A + K = B. If K is rank one and semi-negative definite then $\lambda_i \geqslant \mu_i$ for all i.

Proof of Theorem

Now we can prove the theorem by induction on m = rank(B - A). Proof:

If m=1, then

$$\mathbb{K}x = \sum_{i=1}^{n} \xi_{i}(x, v_{i})v_{i} = \sum_{\xi_{i} \geqslant 0} \xi_{i}(x, v_{i})v_{i} + \sum_{\xi_{i} \leqslant 0} \xi_{i}(x, v_{i})v_{i} =: K_{+}x + K_{-}x$$

, where v_i is the corresponding eigenvector of ξ_i It shows that K can be written as $K_+ + K_-$ such that K_+ is semi-positive and K_- is semi-negative definite.

Then we consider the corresponding function $\xi_{A,A+K_+}$ for A and $A+K_+$, and the corresponding function $\xi_{A+K_+,B}$ for $A+K_+$ and B.

Proof of Theorem

Let $\nu_1\leqslant\cdots\leqslant\nu_n$ be all the eigenvalues of $A+K_+$, then $\sum_{i=1}^n(\mu_i-\nu_i)=trK_-$ and $\sum_{i=1}^n(\nu_i-\lambda_i)=trK_+$. And so, $\xi_{A,B}=\xi_{A,A+K_+}+\xi_{A+K_+,B}$ Therefore,

$$\sum_{i=1}^{n} |\mu_i - \lambda_i| \leqslant \sum_{i=1}^{n} |\mu_i - \nu_i| + \sum_{i=1}^{n} |\nu_i - \lambda_i| = trK_+ - trK_- = \sum_{i=1}^{n} |\xi_i|$$

Next, suppose it holds for $rank(K) \leqslant m$.

And for rank(K)=m+1, there exists K_1' and K_2' such that $K=K_1'+K_2'$, where $rank(K_1')=m$, $rank(K_2')=1$. Thus,

$$\sum_{i=1}^{n} |\mu_i - \lambda_i| \leqslant ||K_1'||_{tr} + ||K_2'||_{tr} = ||K||_{tr}$$

Therefore,

$$\int_{\mathbb{R}} |\xi(t)| dt \leqslant ||B - A||_{tr} = \sum_{i=1}^{n} |\xi_i|$$